¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
·Î±×ÀΠ ȸ¿ø°¡ÀÔ

ÆÄÆ®³Ê½º

ÀÚ·áµî·Ï
 

Àå¹Ù±¸´Ï

´Ù½Ã¹Þ±â

ÄÚÀÎÃæÀü

¢¸

  • º» ¹®¼­ÀÇ
    ¹Ì¸®º¸±â´Â
    Pg ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
¢º
Ŭ¸¯ : Å©°Ôº¸±â


  • º» ¹®¼­ÀÇ
    (Å« À̹ÌÁö)
    ¹Ì¸®º¸±â´Â
    Page ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
  ´õºíŬ¸¯ : ´Ý±â
X ´Ý±â
Á¿ìÀ̵¿ : µå·¡±×

Å©·¹ÀÌÁö °øÇмöÇÐ 9ÆÇ ¼Ö·ç¼Ç

ÀÎ ¼â
¹Ù·Î°¡±â
Áñ°Üã±â Űº¸µå¸¦ ´­·¯ÁÖ¼¼¿ä
( Ctrl + D )
¸µÅ©º¹»ç ¸µÅ©ÁÖ¼Ò°¡ º¹»ç µÇ¾ú½À´Ï´Ù.
¿øÇÏ´Â °÷¿¡ ºÙÇô³Ö±â Çϼ¼¿ä
( Ctrl + V )
¿ÜºÎ°øÀ¯
ÆÄÀÏ    [Size : 0 Kbyte ]
ºÐ·®   Page


īī¿À ID·Î
´Ù¿î ¹Þ±â
±¸±Û ID·Î
´Ù¿î ¹Þ±â
ÆäÀ̽ººÏ ID·Î
´Ù¿î ¹Þ±â

ÀÚ·á¼³¸í
¸ñÂ÷/Â÷·Ê
CHAPTER 1-First-Order ODEs
CHAPTER 2-Second-Order Linear ODEs
CHAPTER 3-Higher Order Linear ODEs
CHAPTER 4-Systems of ODEs. Phase Plane. Qualitative Methods
CHAPTER 5-Series Solutions of ODEs. Special Functions
CHAPTER 6-Laplace Transform
CHAPTER 7-Linear Algebra: Matrices, Vectors, Determinants. Linear Systems
CHAPTER 8-Linear Algebra: Matrix Eigenvalue Problems
CHAPTER 9-Vector Differential Calculus. Grad, Div, Curl
CHAPTER 10-Vector Integral Calculus. Integral Theorems
CHAPTER 11-Fourier Series, Integrals, and Transforms
CHAPTER 12-Partial Differential Equations (PDEs)
CHAPTER 13-Complex Numbers and Functions
CHAPTER 14-Complex Integration
CHAPTER 15-Power Series, Taylor Series
CHAPTER 16-Laurent Series. Residue Integration
CHAPTER 17-Conformal Mapping
CHAPTER 18-Complex Analysis and Potential Theory
CHAPTER 19-Numerics in General
CHAPTER 20-Numeric Linear Algebra
CHAPTER 21-Numerics for ODEs and PDEs
CHAPTER 22-Unconstrained Optimization. Linear Programming
CHAPTER 23-Graphs. Combinatorial Optimization
CHAPTER 24-Data Analysis. Probability Theory
CHAPTER 25-Mathematical Statistics
º»¹®/³»¿ë
im01.qxd

9/21/05

10:17 AM

Page 1

Part A. ORDINARY DIFFERENTIAL EQUATIONS (ODEs)
CHAPTER 1 First-Order ODEs
Major Changes
There is more material on modeling in the text as well as in the problem set. Some additions on population dynamics appear in Sec. 1.5. Electric circuits are shifted to Chap. 2, where second-order ODEs will be available. This avoids repetitions that are unnecessary and practically irrelevant. Team Projects, CAS Projects, and CAS Experiments are included in most problem sets. SECTION 1.1. Basic Concepts. Modeling, page 2 Purpose. To give the students a first impression what an ODE is and what we mean by solving it. Background Material. For the whole chapter we need integration formulas and techniques, which the student should review. General Comments This section should be covered relatively rapidly to get quickly to the actual solution methods in the next sections. Equations (1)?(3) are just examples, not for solution, but the student will see that sol¡¦(»ý·«)



ÀúÀÛ±ÇÁ¤º¸
À§ Á¤º¸ ¹× °Ô½Ã¹° ³»¿ëÀÇ Áø½Ç¼º¿¡ ´ëÇÏ¿© ȸ»ç´Â º¸ÁõÇÏÁö ¾Æ´ÏÇϸç, ÇØ´ç Á¤º¸ ¹× °Ô½Ã¹° ÀúÀ۱ǰú ±âŸ ¹ýÀû Ã¥ÀÓÀº ÀÚ·á µî·ÏÀÚ¿¡°Ô ÀÖ½À´Ï´Ù. À§ Á¤º¸ ¹× °Ô½Ã¹° ³»¿ëÀÇ ºÒ¹ýÀû ÀÌ¿ë, ¹«´Ü ÀüÀ硤¹èÆ÷´Â ±ÝÁöµÇ¾î ÀÖ½À´Ï´Ù. ÀúÀÛ±ÇÄ§ÇØ, ¸í¿¹ÈÑ¼Õ µî ºÐÀï¿ä¼Ò ¹ß°ß½Ã °í°´¼¾ÅÍÀÇ ÀúÀÛ±ÇÄ§ÇØ½Å°í ¸¦ ÀÌ¿ëÇØ Áֽñ⠹ٶø´Ï´Ù.
📝 Regist Info
I D : ********
Date :
FileNo : 11008494

Cart