ÀÚ·á¼³¸í
[ÆÇ¸ÅÁßÁö] ±¸¸Åȸ¿ø¿äû ÆÇ¸ÅÁßÁö(»çÀ¯) : ¹Þ¾Æº¸´Ï ´Ù¸¥Ã¥ÀÇ ¼Ö·ç¼ÇÀÌ¿´½À´Ï´Ù.¤Ð¤Ð -------> ¿øÁ¦ : Linear Algebra With Applications
ÀúÀÚ : Steven J. Leon
ÃâÆÇ»ç : Prentice Hall
¼öÇп¡ ´ëÇÑ ±âÃÊÁö½ÄÀÌ ºÎÁ·ÇÑ µ¶Àڵ鵵 ÀÌ·ÐÀÇ Àü°³¿Í ÇÔ²² ¿©·¯ ºÐ¾ß¿¡¼ ¼±ÅÃµÈ Èï¹ÌÀÖ´Â ´Ù¾çÇÑ ¿¹µéÀÌ »ó¼¼ÇÑ ¼³¸í°ú ÇÔ²² ¼ö·ÏµÇ¾îÀÖ´Ù. ±×¸®°í °¢ ÀåÀÇ ¸¶Áö¸· ºÎºÐ¿¡´Â ¸ÅÆ®·¦ ¿¬½ÀÀ» ¼ö·ÏÇÏ¿© Çлý ½º½º·Î ¼öÄ¡Àû ½ÇÇè°ú ±× °á°ú¸¦ ÅëÇÏ¿© ÀϹÝȸ¦ ½ÃµµÇÒ ¼ö Àִ±âȸ¸¦ Á¦°øÇϰí ÀÖÀ¸¸ç, °¢ Àå¿¡¼ °øºÎÇÑ ±âº» °³³äÀ» È®ÀÎÇÒ ¼ö ÀÖµµ·Ï Àå Å×½ºÆ® ¹®Á¦¸¦ ¼ö·ÏÇÏ¿´´Ù.
¸ñÂ÷/Â÷·Ê
¸ñ·Ï
1Àå Çà·Ä°ú ¿¬¸³ÀÏÂ÷¹æÁ¤½Ä
2Àå Çà·Ä½Ä
3Àå º¤ÅͰø°£
4Àå ¼±Çüº¯È¯
5Àå Á÷±³
6Àå °íÀ¯°ª
7Àå ¼öÄ¡¼±Çü´ë¼ö
**ºÎºÐÀûÀ¸·Î ¸î°³ ºüÁø ¹®Á¦°¡ ÀÖÀ¸³ª, Å©°Ô ÁöÀåÀÌ ÀÖÀ» Á¤µµ´Â ¾Æ´Õ´Ï´Ù.
º»¹®/³»¿ë
INTRODUCTION TO LINEAR ALGEBRA Third Edition
MANUAL FOR INSTRUCTORS
Gilbert Strang
gs@math.mit.edu
Massachusetts Institute of Technology
http://web.mit.edu/18.06/www http://math.mit.edu/?gs http://www.wellesleycambridge.com
Wellesley-Cambridge Press Box 812060 Wellesley, Massachusetts 02482
Solutions to Exercises
Problem Set 1.1, page 6
1 Line through (1, 1, 1); plane; same plane! 3 v = (2, 2) and w = (1, ?1). 4 3v + w = (7, 5) and v ? 3w = (?1, ?5) and cv + dw = (2c + d, c + 2d). 5 u + v = (?2, 3, 1) and u + v + w = (0, 0, 0) and 2u + 2v + w = (add ?rst answers) = (?2, 3, 1). 6 The components of every cv + dw add to zero. Choose c = 4 and d = 10 to get (4, 2, ?6). 8 The other diagonal is v ? w (or else w ? v ). Adding diagonals gives 2v (or 2w ). 9 The fourth corner can be (4, 4) or (4, 0) or (?2, 2). 10 i + j is the diagonal of the base.
1 11 Five more corners (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1). The center point is ( 2 , 1 , 1 ). The 2 2 1 centers¡¦(»ý·«)