¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
·Î±×ÀΠ ȸ¿ø°¡ÀÔ

ÆÄÆ®³Ê½º

ÀÚ·áµî·Ï
 

Àå¹Ù±¸´Ï

´Ù½Ã¹Þ±â

ÄÚÀÎÃæÀü

¢¸

  • º» ¹®¼­ÀÇ
    ¹Ì¸®º¸±â´Â
    Pg ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
¢º
Ŭ¸¯ : Å©°Ôº¸±â


  • º» ¹®¼­ÀÇ
    (Å« À̹ÌÁö)
    ¹Ì¸®º¸±â´Â
    Page ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
  ´õºíŬ¸¯ : ´Ý±â
X ´Ý±â
Á¿ìÀ̵¿ : µå·¡±×

¼±Çü´ë¼öÇаú ÀÀ¿ë 6ÆÇ ¼Ö·ç¼Ç (Linear Algebra With Applications , Steven J. Leon) (±¸¸ÅÀÚ ÆÇ¸ÅÁßÁö)

ÀÎ ¼â
¹Ù·Î°¡±â
Áñ°Üã±â Űº¸µå¸¦ ´­·¯ÁÖ¼¼¿ä
( Ctrl + D )
¸µÅ©º¹»ç ¸µÅ©ÁÖ¼Ò°¡ º¹»ç µÇ¾ú½À´Ï´Ù.
¿øÇÏ´Â °÷¿¡ ºÙÇô³Ö±â Çϼ¼¿ä
( Ctrl + V )
¿ÜºÎ°øÀ¯
ÆÄÀÏ    [Size : 0 Kbyte ]
ºÐ·®   Page


īƮ
´Ù¿î¹Þ±â
īī¿À ID·Î
´Ù¿î ¹Þ±â
±¸±Û ID·Î
´Ù¿î ¹Þ±â
ÆäÀ̽ººÏ ID·Î
´Ù¿î ¹Þ±â
µÚ·Î

ÀÚ·á¼³¸í
[ÆÇ¸ÅÁßÁö] ±¸¸Åȸ¿ø¿äû ÆÇ¸ÅÁßÁö(»çÀ¯) : ¹Þ¾Æº¸´Ï ´Ù¸¥Ã¥ÀÇ ¼Ö·ç¼ÇÀÌ¿´½À´Ï´Ù.¤Ð¤Ð -------> ¿øÁ¦ : Linear Algebra With Applications ÀúÀÚ : Steven J. Leon ÃâÆÇ»ç : Prentice Hall ¼öÇп¡ ´ëÇÑ ±âÃÊÁö½ÄÀÌ ºÎÁ·ÇÑ µ¶Àڵ鵵 ÀÌ·ÐÀÇ Àü°³¿Í ÇÔ²² ¿©·¯ ºÐ¾ß¿¡¼­ ¼±ÅÃµÈ Èï¹ÌÀÖ´Â ´Ù¾çÇÑ ¿¹µéÀÌ »ó¼¼ÇÑ ¼³¸í°ú ÇÔ²² ¼ö·ÏµÇ¾îÀÖ´Ù. ±×¸®°í °¢ ÀåÀÇ ¸¶Áö¸· ºÎºÐ¿¡´Â ¸ÅÆ®·¦ ¿¬½ÀÀ» ¼ö·ÏÇÏ¿© Çлý ½º½º·Î ¼öÄ¡Àû ½ÇÇè°ú ±× °á°ú¸¦ ÅëÇÏ¿© ÀϹÝÈ­¸¦ ½ÃµµÇÒ ¼ö Àִ±âȸ¸¦ Á¦°øÇϰí ÀÖÀ¸¸ç, °¢ Àå¿¡¼­ °øºÎÇÑ ±âº» °³³äÀ» È®ÀÎÇÒ ¼ö ÀÖµµ·Ï Àå Å×½ºÆ® ¹®Á¦¸¦ ¼ö·ÏÇÏ¿´´Ù.
¸ñÂ÷/Â÷·Ê
¸ñ·Ï
1Àå Çà·Ä°ú ¿¬¸³ÀÏÂ÷¹æÁ¤½Ä
2Àå Çà·Ä½Ä
3Àå º¤ÅͰø°£
4Àå ¼±Çüº¯È¯
5Àå Á÷±³
6Àå °íÀ¯°ª
7Àå ¼öÄ¡¼±Çü´ë¼ö
**ºÎºÐÀûÀ¸·Î ¸î°³ ºüÁø ¹®Á¦°¡ ÀÖÀ¸³ª, Å©°Ô ÁöÀåÀÌ ÀÖÀ» Á¤µµ´Â ¾Æ´Õ´Ï´Ù.
º»¹®/³»¿ë
INTRODUCTION TO LINEAR ALGEBRA Third Edition
MANUAL FOR INSTRUCTORS

Gilbert Strang
gs@math.mit.edu

Massachusetts Institute of Technology
http://web.mit.edu/18.06/www http://math.mit.edu/?gs http://www.wellesleycambridge.com

Wellesley-Cambridge Press Box 812060 Wellesley, Massachusetts 02482

Solutions to Exercises
Problem Set 1.1, page 6
1 Line through (1, 1, 1); plane; same plane! 3 v = (2, 2) and w = (1, ?1). 4 3v + w = (7, 5) and v ? 3w = (?1, ?5) and cv + dw = (2c + d, c + 2d). 5 u + v = (?2, 3, 1) and u + v + w = (0, 0, 0) and 2u + 2v + w = (add ?rst answers) = (?2, 3, 1). 6 The components of every cv + dw add to zero. Choose c = 4 and d = 10 to get (4, 2, ?6). 8 The other diagonal is v ? w (or else w ? v ). Adding diagonals gives 2v (or 2w ). 9 The fourth corner can be (4, 4) or (4, 0) or (?2, 2). 10 i + j is the diagonal of the base.
1 11 Five more corners (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1). The center point is ( 2 , 1 , 1 ). The 2 2 1 centers¡¦(»ý·«)



ÀúÀÛ±ÇÁ¤º¸
*À§ Á¤º¸ ¹× °Ô½Ã¹° ³»¿ëÀÇ Áø½Ç¼º¿¡ ´ëÇÏ¿© ȸ»ç´Â º¸ÁõÇÏÁö ¾Æ´ÏÇϸç, ÇØ´ç Á¤º¸ ¹× °Ô½Ã¹° ÀúÀ۱ǰú ±âŸ ¹ýÀû Ã¥ÀÓÀº ÀÚ·á µî·ÏÀÚ¿¡°Ô ÀÖ½À´Ï´Ù. À§ Á¤º¸ ¹× °Ô½Ã¹° ³»¿ëÀÇ ºÒ¹ýÀû ÀÌ¿ë, ¹«´Ü ÀüÀ硤¹èÆ÷´Â ±ÝÁöµÇ¾î ÀÖ½À´Ï´Ù. ÀúÀÛ±ÇÄ§ÇØ, ¸í¿¹ÈÑ¼Õ µî ºÐÀï¿ä¼Ò ¹ß°ß½Ã °í°´¼¾ÅÍÀÇ ÀúÀÛ±ÇÄ§ÇØ½Å°í ¸¦ ÀÌ¿ëÇØ Áֽñ⠹ٶø´Ï´Ù.
📝 Regist Info
I D : ********
Date :
FileNo : 27245298

Cart